August 4, 2020

Working with Bathymetric Data

Written by: Katrina Schweikert


Global Mapper is well known for its file format support and terrain analysis capabilities. Perhaps what is less well known is the way the various data analysis tools in Global Mapper can be used to generate and analyze bathymetric data.

Bathymetry is the study of topographic landforms below the water, such as on the ocean floor, the bottom of a lake, or even the bed of a river. Given that over 70% of the earth’s surface is covered with water, this branch of 3D analysis is extremely important in understanding the characteristics of the planet. What follows is an exploration of some of Global Mapper’s analysis and visualization techniques that are relevant to the bathymetric analysis.

Great Barrier Reef Depth model obtained from Geoscience Australia

Bathymetric Data Support

Global Mapper provides support for over 300 file formats, and many of those include formats for bathymetric data, marine navigation, and remote sensing of subsurface data. Here are some examples:

  • Marine Navigation and Nautical Charts (S-57 and S-63 with s-52 symbols, NOS/GEO, NV Verlag, PCX,  and others)
  • Sonar, Sidescan sonar and Bathymetric Sounding data (Lowrance Sonar, XTF, HTF, and others)
  • Gridded Bathymetric Data (BAG, DBDBV, Hypack, IBCOA, GRD98, NITF, various other terrain formats such as netCDF, GeoTiff, ASCII grid)

Bathymetry in a DTM

Gridded bathymetric data provides various visualization and analysis options when loaded into Global Mapper.   The preformatted elevation shaders or a custom shader can be used to find the best color scheme to show depths of submarine landforms. Terrain Shaders can also reveal the slope steepness and slope direction of underwater topography.

Displayed in the 3D viewer, gridded bathymetric data comes to life with draped imagery and charts, water level visualizations, and any other reference vector data. Quickly and easily generate elevation profiles, or a series of sequential cross-profiles using the Path Profile tool and Perpendicular Profiles setting.

3D view of bathymetric data with path profile cutaway showing a shipwreck site in the Gulf of Mexico

Combining data from different surveys and fusing data from multiple sensors is as easy as loading in the datasets and ordering the layers. The analysis and visualization tools can automatically merge the various inputs to take data from the topmost layer or choose to view and compare the data from multiple surfaces simultaneously. There are also options for cropping, aligning, feathering, and comparing to create a more seamless integration between disparate datasets.

Analyzing Bathymetry as a 3D Point Cloud

Global Mapper provides tools for converting existing sensor data such as sonar or soundings to a 3D point cloud; or for sampling existing gridded data to create an array of 3D points at the pixel centers. This enables the automated classification algorithms of the Lidar Module, which can be used to identify the seafloor and identify or remove other subsurface structures or topography. This powerful tool has been used for shipwreck detection and modeling, as well as identification of other subsurface features.

Subsurface Contouring

Global Mapper includes an easy-to-use tool for generating precise depth contours and shorelines from gridded bathymetric data. The resulting line features can be edited and stylized in a variety of ways and combined with other datasets to create custom bathymetric charts. Alternatively, the areas enclosed by contours lines can be filled to create polygons that show the water extent at different depths or sea levels.

Contour lines colored by elevation combined with other basemap data to create a custom chart

Measurement and Volume Calculation

Global Mapper provides various tools for calculating two- and three-dimensional measurements. In the 2D map view, the Path Profile window, and the 3D Viewer linear distances and areas are measured using a simple drawing function. Volume can be calculated from bathymetric data by either defining a height or by calculating numerous volumes across a range of water heights. Volume can also be measured by defining a plane or comparing the bathymetric data to a surface grid. This provides various options for water volume calculation.

Flood Modeling

By combining bathymetric data with terrain data and using tools such as the watershed analysis and water level rise tool it is possible to discover flood extents, flow accumulation, and perform other hydrographic analysis.

Employing the various terrain editing and terrain creation functions, Global Mapper can be used to create hydro-enforced DEMs or other modified surface models. These can be analyzed within Global Mapper or exported to various formats to support analysis in other applications.

Temperature and other Measurements

The bathymetric analysis may also involve other gridded datasets such as surface temperature, salinity, gravimetric data, and various other measured values. These datasets can also be visualized, rendered in 3D, and contoured to provide additional insight into the dynamics of lakes, oceans, and other water bodies.

The latest version of the Global Mapper and Lidar Module include several enhancements, many of which apply to bathymetric data analysis. If this blog piqued your interest and you’d like to find out if Global Mapper is the right application for you, download a 14-day free trial and request a demo today!

Companies using Blue Marble’s geospatial technology