Ordnance Survey National Grid Transform of 2002

To cope with the distortions in the OSGB36 TRF, different transformations are needed in different parts of the country. For this reason, the national standard datum transformation between OSGB36 and ETRS89 is not a simple Helmert datum transformation. Instead, Ordnance Survey has developed a rubber-sheet type transformation which works with a transformation grid expressed in easting and northing coordinates. The grids of northing and easting shifts between ETRS89 and OSGB36 cover Britain at a resolution of one kilometre. From these grids, a northing and easting shift for each point to be transformed is obtained by a bilinear interpolation.

The National Grid Transformation copes not only with the change of datum between the two coordinate systems, but also with the TRF distortions in the OSGB36 triangulation network, which make a simple datum transformation of the Helmert type limited to applications at 5m and larger accuracy levels. This transformation removes the need to estimate local Helmert transformations between ETRS89 and OSGB36 for particular locations.

Because the National Grid Transformation works with easting and northing coordinates, other ETRS89 coordinate types (3-D Cartesian or latitude and longitude) must first be converted to eastings and northings. This is done using the same map projection as is used for the National Grid (see section 7 below), except that the GRS80 ellipsoid, rather than the Airy ellipsoid, is used. After the transformation, the resulting National Grid eastings and northings can be converted back to latitude and longitude (this time using the Airy ellipsoid) if required.

Note: The definition of datum transformations using this method includes parameters specifying the required grid files. If the system cannot find the specified file, the shift will be marked unusable in the Datasource and may not be selected for use.